Standard operating procedures (SOPs) for new POPs

Jacob de Boer
VU Univeristy, Amsterdam, The Netherlands

Heidelore Fiedler
Örebro University
School of Science and Technology, MTM Research Centre
Örebro, Sweden
New POPs to be analysed

<table>
<thead>
<tr>
<th>POP</th>
<th>Air</th>
<th>Human milk/blood</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordecone</td>
<td>Chlordecone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosulfan</td>
<td>α-, β-endosulfan; and endosulfan sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBCD</td>
<td>α-HBCD, β-HBCD, γ-HBCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachlorocyclohexanes</td>
<td>α-HCH, β-HCH, γ-HCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexabromobiphenyl</td>
<td>PBB-153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>PeCBz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penta BDE, Octa BDE</td>
<td>PBDE 28, 47, 99, 153, 154, 175/183 (may co-elute)</td>
<td>Optional: PBDE 17, 100</td>
<td></td>
</tr>
<tr>
<td>PFOS</td>
<td>PFOS (linear and sum of PFOS)</td>
<td>NMeFOSA, NEtFOSA, NMeFOSE, NEtFOSE</td>
<td></td>
</tr>
</tbody>
</table>
Guidance for Global Monitoring Plan

Orientation and benchmark for POPs www.pops.int
POPs Analysis and Monitoring

SOPs and supporting materials

Pacific Islands Region

- SOP Regional Guidance for Mothers Collecting Milk Samples
- USP-IAS Instructions for PAS

- Guide for PAS (en, sp)
- SOP Cleaning of glassware (en, sp)
- SOP Collection of mothers’ milk (en, sp)
- SOP Indicator PCB in air (en, sp)
- SOP Indicator PCB in fish (en, sp)
- SOP Indicator PCB in mothers’ milk (en, sp)
- SOP OCP en aire (en, sp)
- SOP OCP en leche materna (en, sp)
- SOP OCP en pescado (en, sp)
- SOP OCP en sedimentos (en, sp)
- SOP PCDD PCDF dl-PCB en aire (en, sp)
- SOP PCDD PCDF dl-PCB en leche materna (en, sp)
- SOP PCDD PCDF dl-PCB en pescado (en, sp)
- SOP PCDD PCDF dl-PCB en sedimentos (en, sp)

- SOP Kenya: Mothers’ Milk
- SOP Recetox PAS

GRULAC Region

East and South Africa

- SOP in passive air sampling (PAS)

West Africa

Cross-cuttings

- Guidance for organisation, sampling and analysis of human milk

<table>
<thead>
<tr>
<th>Laboratory instrumentation level</th>
<th>Equipment</th>
<th>Infrastructure needs</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Sample extraction and cleanup systems (manually or automated), LC-MS/MS</td>
<td>Nitrogen/air conditioning/consistent power/high operational costs/personnel specifically trained to operate and troubleshoot complicated instrumentation</td>
<td>PFOS and other anionic PFCs, PFOSA</td>
</tr>
<tr>
<td>3</td>
<td>Basic sample extraction and cleanup equipment, capillary GC-ECD</td>
<td>Nitrogen/air conditioning/power/personnel specifically trained to operate and troubleshoot equipment problems</td>
<td>PBB, most PCB and all OCPs except toxaphene</td>
</tr>
<tr>
<td>2a</td>
<td>Sample extraction and cleanup equipment, capillary GC-LRMS – electron ionization mode</td>
<td>Helium/air conditioning/consistent power/personnel specifically trained to operate and troubleshoot equipment problems</td>
<td>PBB, most PCB and all OCPs; Also perfluoro-sulfamido alcohols in positive chemical ionization mode</td>
</tr>
<tr>
<td>2b</td>
<td>Sample extraction and cleanup equipment, capillary GC-LRMS – negative chemical ionization mode</td>
<td>Methane or other moderating gas/air conditioning/consistent power/personnel specifically trained to operate and troubleshoot equipment problems</td>
<td>PBDE and PBB, as well as toxaphene and other highly chlorinated (≥4 Cl) OCPs</td>
</tr>
<tr>
<td>1</td>
<td>Sample extraction and cleanup equipment, capillary GC-HRMS</td>
<td>Helium/air conditioning/consistent power/high operational costs/personnel specifically trained to operate and troubleshoot complicated instrumentation</td>
<td>PCDD/PCDF, all PCB, all OCPs, PBB, all PBDE</td>
</tr>
</tbody>
</table>

GC-ECD – gas chromatography/electron capture detection
GC-LRMS – gas chromatography/low resolution mass spectrometry
GC-HRMS – gas chromatography/high resolution mass spectrometry
LC-MS/MS – high performance liquid chromatography/tandem mass spectrometry
PY – Person-year
Standard operational procedures for new POPs – example of PFAS
How to use SOPs

- SOPs are *guidelines*
- If followed precisely: good results
- Other methods are possible and allowed
- However: always optimize and validate!
- Validation: in house reference materials, certified reference materials, interlab study
SOPs for POPs

• Protocol 1: Analysis of PFOS in Water and FOSA in Mothers’ Milk Serum and Air, and the Analysis of some FOSAs and FOSEs in Air

• Protocol 2: Analysis of PCB and OCP in Human Milk, Air and Human Serum

• Protocol 3: Analysis of PBDE in Human Milk, Air and Human Serum

• Mirror samples

Method development

• In order to generate high quality and comparable results, the protocols and methods for sampling and analysis of all POPs in relevant types of samples have to be harmonized;

• In all regions and over time, the same basic approaches and quality criteria for acceptance of data and assessment of results should be applied.
 – Standard operating procedures (SOPs) for groups of POPs
 – General guidelines for specific matrices (types of samples):

Note: The guides and SOPs should be taken as an orientation and be transferred into daily routines by each laboratory.

Choice of analytical method

• The SOPs prepared for UNEP describe general procedures for analysis;

• However, it is possible to change certain parameters and analytical conditions described in this protocol, while still obtaining the same results;

• In any case, the entire method should be optimized and validated to ensure the comparability of data.
Water quality — Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) — Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry
How to control background contamination in the laboratory?
How to control background contamination from the instrument?

How to control instrumental blank?

- seal
- solvent selection valve
- rotor seal

Septum blank?

- Polyethylene
- Teflon
- Viton

POLYETHYLENE
TEFLON
VITON
Structural isomers of PFOS identified in technical mixtures

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Formula</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>ν-perfluoro-octanesulfonate</td>
</tr>
<tr>
<td>1-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{SO}_3^-$</td>
<td>perfluoro-1-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>2-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-2-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>3-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-3-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>4-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-4-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>5-PFOS</td>
<td>$\text{CF}_3\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-5-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>6-PFOS</td>
<td>$\text{CF}_3\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-6-methyl-heptanesulfonate</td>
</tr>
<tr>
<td>4,4-PFOS</td>
<td>$\text{CF}_3\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-4,4-dimethyl-hexanesulfonate</td>
</tr>
<tr>
<td>3,5-PFOS</td>
<td>$\text{CF}_3\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-3,5-dimethyl-hexanesulfonate</td>
</tr>
<tr>
<td>4,5-PFOS</td>
<td>$\text{CF}_3\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}(\text{CF}_3)\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-4,5-dimethyl-hexanesulfonate</td>
</tr>
<tr>
<td>5,5-PFOS</td>
<td>$\text{CF}_3\text{CF}(\text{CF}_3)_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{SO}_3^-$</td>
<td>perfluoro-5,5-dimethyl-hexanesulfonate</td>
</tr>
</tbody>
</table>

Technical mixtures typically contain between 71% and 83% L-PFOS (Vyas et al. 2007)
Differences in PFOS isomer profiles in human plasma

Why do we see differences?
- sources of exposure
- historical vs. recent exposure
- precursors
- differences in internal elimination

![Bar chart showing differences in PFOS isomer profiles for different samples](image)

- DL08007: 650 - 54% branched PFOS
- DL08007: 910 - 35% branched PFOS
- DL08007: 906 - 19% branched PFOS
Choice of analytical method

The choice of analytical method should be needs-oriented and developed to fit the purpose of the study!

Table 2. A summary of selected analytical methods for the determination of fluorinated POPs in human serum/plasma

<table>
<thead>
<tr>
<th>Analytes</th>
<th>N analytes</th>
<th>Study type</th>
<th>Year</th>
<th>Sample amount</th>
<th>Pre-treatment</th>
<th>Extraction and clean-up</th>
<th>Instrumental analysis</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFAAs</td>
<td>13</td>
<td>Method development</td>
<td>2011</td>
<td>100 µL</td>
<td>0.1 M formic acid</td>
<td>On-line SPE: C18</td>
<td>HPLC-ESI-MS/MS</td>
<td>[41]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>13</td>
<td>Inter-laboratory comparison</td>
<td>2010</td>
<td>0.15–1.2 g</td>
<td>Formic acid (50/50, v/v)</td>
<td>SPE: Oasis WAX</td>
<td>HPLC-ESI-MS/MS</td>
<td>[38]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>10</td>
<td>Inter-laboratory comparison</td>
<td>2010</td>
<td>0.2 mL</td>
<td>0.1 mol/L formic acid</td>
<td>On-line SPE: C18</td>
<td>HPLC-TIS-MS/MS</td>
<td>[38]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>13</td>
<td>Inter-laboratory comparison</td>
<td>2010</td>
<td>0.2 mL</td>
<td>PP with acetonitrile</td>
<td>n.i.</td>
<td>HPLC-TIS-MS/MS</td>
<td>[38]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>8</td>
<td>Inter-laboratory comparison</td>
<td>2010</td>
<td>1 mL</td>
<td>n.i.</td>
<td>LLE using ion pair, filtration with PTFE</td>
<td>HPLC-ESI-MS/MS</td>
<td>[38]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFAAs</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFAAs</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFAAs</td>
<td>25</td>
<td>Method development</td>
<td>2010</td>
<td>0.5 mL whole blood</td>
<td>Formic acid (50% in water) or acetonitrile</td>
<td>SPE: Oasis WAX, LLE using ion pair, and LLE using acetonitrile</td>
<td>LC-ESI-MS/MS and JI-50 2D</td>
<td>[36]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>18</td>
<td>Method development</td>
<td>2005</td>
<td>100 µL</td>
<td>0.1 M formic acid</td>
<td>SPE: C18, filtration with membrane 0.2 µm filter</td>
<td>HPLC-TIS-MS/MS</td>
<td>[34]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>12</td>
<td>Method development</td>
<td>2005</td>
<td>0.75 mL whole blood</td>
<td>Formic acid (50/50, v/v)</td>
<td>SPE: C18, filtration with membrane 0.2 µm filter</td>
<td>HPLC-ESI-MS and LC-MS/MS</td>
<td>[43]</td>
</tr>
<tr>
<td>PFAAs</td>
<td>13</td>
<td>Method development</td>
<td>2004</td>
<td>1 mL</td>
<td>0.1 M formic acid</td>
<td>Off-line SPE: Oasis HLB</td>
<td>HPLC-TIS-MS/MS</td>
<td>[39]</td>
</tr>
</tbody>
</table>

Note: no information (n.i.).

Salihovic et al, TRAC 2013
Principle

- Sample preparation of water, milk, and serum/plasma samples is similar but different for air
- Extraction: Soxhlet extraction and SPE
- Clean-up (ENV carb): depending on the complexity of the sample matrix
- Method validation: ILSs, SRMs, CRMs, and spiking experiments
- Instrumental analysis: UPLC-ESI-MS/MS in negative ion mode
Materials and reagents

Materials:
- Glass Beaker (2 L)
- Polypropylene bottle (100 mL)
- Plastic pipettes
- Polypropylene tubes (15 mL)
- Micro tubes (1.5 mL)
- Crimp cap polypropylene vial (700 µL)
- Seal, silver aluminum 11 mm, PTFE/Rubber Liner
- Capper/Decapper
- Ultrasonic bath
- Vacuum dessicator
- Balance (precision 0.01 g)
- Pipettes (50, 100 and 200 µL)
- Centrifuge
- Oven (37 °C)
- SPE device (rinse with methanol and water prior to use)
- pH meter
- Vacuum pump
- Water bath (50 °C)
- Whirl mixer
- LC-MS/MS (LC-QQQ). Electrospray source (ESI) with negative polarity
- FluoroSEP-RP Octyl column, 15 cm x 2.1 mm, 5 µm particle size, ES Industries (132211-FO)
- 2 x Symmetry columns C18, 20 mm x 3.9 mm, 5 µm particle size, Waters (WAT054225)
- Symmetry column C18, 50 mm x 2.1 mm, 5 µm particle size, Waters (18600206)

Reagents:
- Polyurethane foam (PUF) disk, 14 cm x 1.35 cm, surface area 365 cm², mass 4.40 g, volume 207 cm³, Tisch Environmental, Cleves, OH
- Aceton, Ultraresi, J.T.Baker (9254)
- Petroleum ether, J.T.Baker
- Methanol, HPLC gradient grade, J.T.Baker (8402)
- Internal standard (\(^{13}\text{C}_4\) PFOS + \(^{18}\text{O}_2\) PFOSA + \(^2\text{H}_3\) MeFOSA + \(^2\text{H}_5\) EtFOSA + \(^2\text{H}_7\) MeFOSE + \(^2\text{H}_9\) EtFOSE) in methanol (100 ng/mL)
- Internal standard (\(^{13}\text{C}_4\) PFOS + \(^{18}\text{O}_2\) PFOSA) in methanol (100 ng/mL)
- 50% Formic acid in water
- SPE Cartridge, Oasis WAX 6cc, Waters 186002493
- Acetic acid 100 % pro analysis (p.a.) purity
- Ammonium acetate p.a. purity
- 0.1% NH4OH in methanol; add 400 µL ammonia to 100 mL methanol
- 2 % NH4OH in methanol; add 8 mL ammonia to 92 mL methanol
- HPLC water, HPLC analyzed, J.T. Baker (4218), or MilliQ purity
- Acetic acid 100 % pro analysis (p.a.) purity
- Ammonium acetate p.a. purity
- 25 mM Ammonium acetate; add 190 mg ammonium acetate to 100 mL water and adjust the pH to pH=4 with acetic acid
- Nitrogen gas. Purity 5.0
- Injection standard (1) (13C8 PFOS) in methanol/water (1:1, v/v) (150 ng/mL)
- Injection standard (2) (13C8 PFOS) in methanol/water (1:1, v/v) (50 ng/mL)
- Injection standard (3) (13C8 PFOS) in methanol/water (1:1, v/v) (25 ng/mL)
- Ammonium formate, (>99%), Fluka (09735)
- Ammonium formate buffer 5 mM: Dissolve 315 mg ammonium formate in 1 L HPLC water. Filter prior to use.
- PFAS calibration solutions (0.05, 0.25, 0.5, 5, 50, 100 ng/mL) in methanol/water (1:1, v/v)
Air

- Polyurethane foam (PUF) disk
 - Preparation of the PUF
 - Cleaning of a PUF:
 - If necessary, wash the PUF in water;
 - Perform a Soxhlet extraction on the PUF with acetone (24 h), followed by petroleum ether (24 h)
 - Dry the PUF in a desiccator (24 h)

- Air sampling
 - Place PUF in passive sampler for 3 months at sampling location

- Sample preparation
 - Take PUF out of the sampler
 - Add 150 µL Internal standard (I.S.) to the PUF

- Procedural blank
 - Prepare a PUF as described above without the exposure time during the sampling
Air - analysis

- Perform a Soxhlet extraction with methanol (12 h)
- Concentrate extract to 1 mL by rotary evaporator or Kuderna-Danish
- Filter extract through a 0.2 µm glass hydrophilic polypropylene (GHP) filter into a polypropylene LC vial
- Concentrate to 200 µL under a gentle stream of nitrogen
- Add 100 µL injection standard
- Add 300 µL 2mM ammonium acetate and shake manually
- Analyze with LC-MS/MS
Water sampling and sample preparation

Water sampling described in “PFOS analysis in water for the Global Monitoring Plan of the Stockholm Convention” (UNEP GMP WG)

Sample preparation

- As soon as the sample arrives to the analytical laboratory internal standards (IS) should be added to compensate for absorbance to laboratory equipment
- The sample (incl. IS) should have time to equilibrate before analysis
- Keep the water samples (500 mL) in a high density polyethylene (HDPE) in the fridge or freezer (-20 °C) and defrost them the day before analysis
- Shake the water rigorously before subsamples are taken out;
- Weigh 100 mL of water sample in a HDPE bottle

Procedural blank

- Prepare a procedural blank sample using ultra clean (MilliQ) water as sample substitute
Human milk and serum sample preparation

Follow the UNEP/WHO protocol for sampling of human milk ‘UNEP-coordinated Survey of Mothers’ Milk for Persistent Organic Pollutants’ (http://www.unep.org/chemicalsandwaste/portals/9/POPs/docs/Mothers%20milk%20guide%20POPs.pdf)

Sample preparation
• Homogenise sample (50 mL) by shaking for 1 min
• Weigh 1 mL of milk, or 0.5 mL serum in PP tube (15 mL)
• Add 50 µL I.S.
• Add 2 mL 50% formic acid and shake manually
• Place sample in an ultrasonic bath for 15 min
• Centrifuge 15 min at 3,000 rpm
• Place sample in an oven at 37 °C for 30 min

Procedural blank
• Prepare a procedural blank sample as described above in sample description using ultra clean (MilliQ) water
Water, human milk and human serum

- Solid phase extraction (SPE) is used for the extraction of water, mothers’ milk and serum.
- Install an SPE cartridge on the SPE device

- Waters Oasis® WAX SPE Column
- Mixed-mode Weak Anion-exchange and reversed-phase sorbent
- Single use Oasis cartridge
- Retain and release strong acids (e.g. sulfonates)
Method validation and performance

• Sensitivity
 – MDLs ranged 0.01 ng mL⁻¹-0.17 ng mL⁻¹
 – Linear range: 0.01 ng mL⁻¹-60 ng mL⁻¹
• Accuracy
 – Conformed well with NIST SRM 1957 (n=54)
 – 6-32% normalized difference

Repeatability (QC n=7) and reproducibility (QC n=103) ranged between 2%-20% including structural PFOS isomers
Instrumental analysis

- Analytical column and guard column
- **Extra column** (50 mm) and a guard column **between the LC pump and the injector**, to prevent interference of PFASs, originating from the LC system
- Purge all the mobile phase solvents through the system
- Start pump with 65% ammonium formate and 35% methanol
- Place all extracts, blanks, calibration solutions in tray of autosampler
- Make a sequence in the computer. Analyse the samples, the calibration solutions, the blank and the reference material in random order
- Inject calibration solution after pump has been running for 30 min
- Check performance of LC-MS/MS by comparing retention times and peak intensities of the calibration solution with earlier results;
Sample chromatogram

Chromatogram showing the separation of linear and branched PFOS in water (surface water sample from The Netherlands)

Note: PFAS concentrations should be reported on wet weight basis. However, often, results are reported on sulfonate anion basis, i.e., corrected for the molecular weight of the PFOS salt (with cation)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Precursor Ion (m/z)</th>
<th>Production (m/z)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOS</td>
<td>499</td>
<td>80</td>
<td>Quantifier</td>
</tr>
<tr>
<td>13C4 PFOS</td>
<td>503</td>
<td>80</td>
<td>Quantifier</td>
</tr>
<tr>
<td>13C8 PFOS</td>
<td>507</td>
<td>80</td>
<td>Quantifier</td>
</tr>
<tr>
<td>FOSA</td>
<td>498</td>
<td>78</td>
<td>Quantifier</td>
</tr>
<tr>
<td>18O2 FOSA</td>
<td>502</td>
<td>82</td>
<td>Quantifier</td>
</tr>
<tr>
<td>MeFOSA</td>
<td>512</td>
<td>169</td>
<td>Quantifier</td>
</tr>
<tr>
<td>2H3 MeFOSA</td>
<td>515</td>
<td>169</td>
<td>Quantifier</td>
</tr>
<tr>
<td>EtFOSA</td>
<td>526</td>
<td>169</td>
<td>Quantifier</td>
</tr>
<tr>
<td>2H5 EtFOSA</td>
<td>531</td>
<td>169</td>
<td>Quantifier</td>
</tr>
<tr>
<td>MeFOSE</td>
<td>602</td>
<td>45</td>
<td>Quantifier</td>
</tr>
<tr>
<td>2H7 MeFOSE</td>
<td>609</td>
<td>45</td>
<td>Quantifier</td>
</tr>
<tr>
<td>EtFOSE</td>
<td>616</td>
<td>45</td>
<td>Quantifier</td>
</tr>
<tr>
<td>2H9 EtFOSE</td>
<td>625</td>
<td>45</td>
<td>Quantifier</td>
</tr>
</tbody>
</table>
Tools and methods for new POPs

• PFAS analysis in water - Set-up and guidelines for monitoring
• Instructive movie for analysis of PFOS and precursors
• Movie with instructions for the cleaning of PUF disks for passive sampling of ambient air