







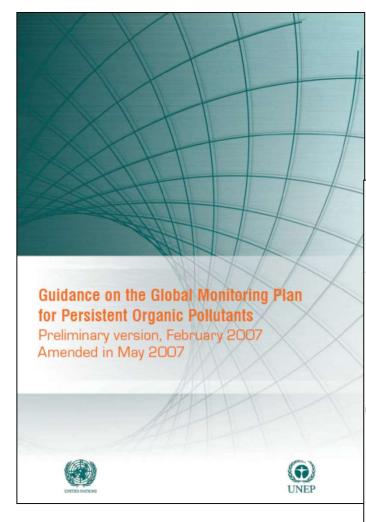
# Standard operating procedures (SOPs) for new POPs

Jacob de Boer

VU Univeristy, Amsterdam, The Netherlands

Heidelore Fiedler

Örebro University


School of Science and Technology, MTM Research Centre Örebro, Sweden



# New POP compounds to be analysed

| POP                     | Air                                   | Human milk/blood      | Water |
|-------------------------|---------------------------------------|-----------------------|-------|
| Chlordecone             | Chlor                                 |                       |       |
| Endosulfan              | α-, β-endosulfan; a                   | nd endosulfan sulfate |       |
| HBCD                    | α-ΗΒCD, β-                            | HBCD, γ-HBCD          |       |
| Hexachloroyclohexanes   | α-ΗСΗ, β-                             | -НСН, γ-НСН           |       |
| Hexabromobiphenyl       | PBI                                   | B-153                 |       |
| Pentachlorobenzene      | Pe                                    |                       |       |
| c-penta BDE, c-octa BDE | PBDE 47, 99, 153, 15                  |                       |       |
|                         | Optional: PBDE 17, 28,<br>100         | Optional: PBDE 100    |       |
| PFOS                    | PFOS (linear and sum of PFOS)         |                       |       |
|                         | NMeFOSA, NEtFOSA,<br>NMeFOSE, NEtFOSE |                       |       |

# Guidance for Global Monitoring Plan



Orientation and benchmark for POPs <a href="https://www.pops.int">www.pops.int</a>

UNITED NATIONS

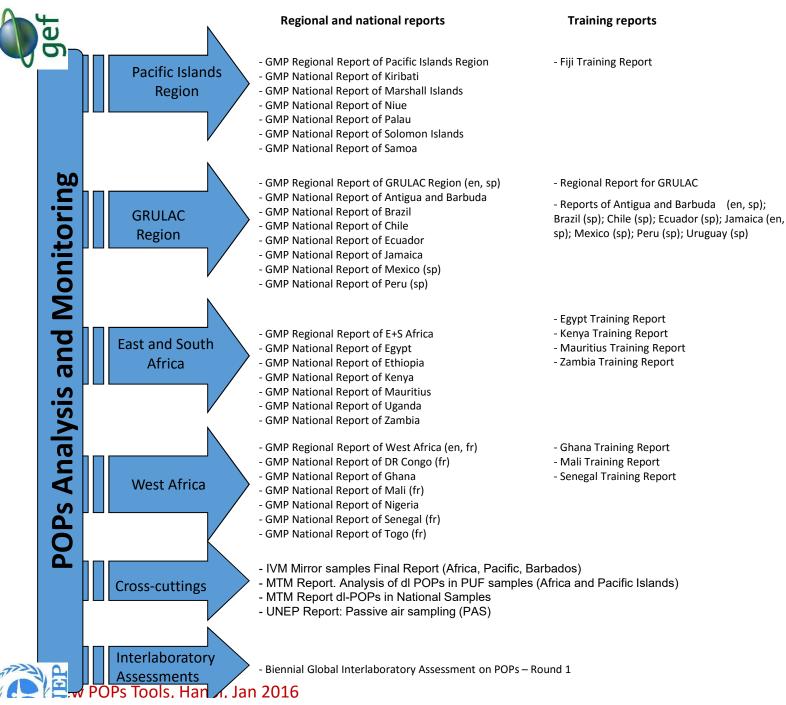


SC

UNEP/POPS/COP.7/INF/39

Distr.: General 26 February 2015 English only

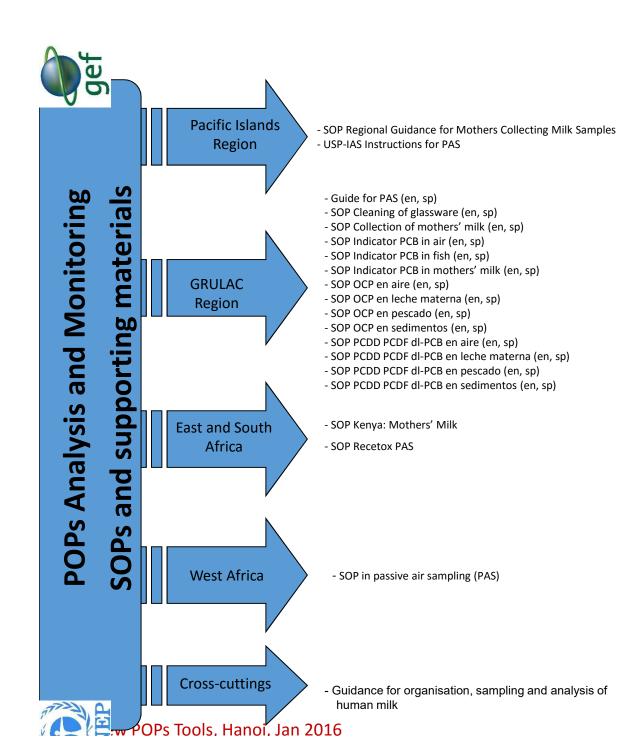



Stockholm Convention on Persistent Organic Pollutants

Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants Seventh meeting Geneva, 4–15 May 2015

Geneva, 4–15 May 2015 Item 5 (i) of the provisional agenda\*

Matters related to the implementation of the Convention: effectiveness evaluation


> Guidance on the global monitoring plan for persistent organic pollutants





















| Laboratory<br>instru-<br>mentation<br>level | Equipment                                                                                                  | Infrastructure needs                                                                                                                                                        | Chemicals                                                                                                      |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 5                                           | Sample extraction and clean-<br>up systems (manually or<br>automated), LC-MS/MS)                           | Nitrogen/air condition-<br>ing/consistent power/high<br>operational costs/personnel<br>specifically trained to operate<br>and troubleshoot complicated<br>instrumentation   | PFOS and other anionic<br>PFCs, PFOSA                                                                          |
| 3                                           | Basic sample extraction and clean-up equipment, capillary GC-ECD                                           | Nitrogen/air conditioning/power/<br>personnel specifically trained to<br>operate and troubleshoot equip-<br>ment problems                                                   | PBB, most PCB and all<br>OCPs except toxaphene                                                                 |
| 2a                                          | Sample extraction and clean-<br>up equipment, capillary GC-<br>LRMS – electron ionization<br>mode          | Helium/air conditioning/<br>consistent power/ personnel<br>specifically trained to operate<br>and trouble-shoot equipment<br>problems                                       | PBB, most PCB and all<br>OCPs;<br>Also perfluoro-sulfamido<br>alcohols in positive<br>chemical ionization mode |
| 2b                                          | Sample extraction and clean-<br>up equipment, capillary GC-<br>LRMS – negative chemical<br>ionization mode | Methane or other moderating<br>gas/air conditioning/ consistent<br>power/ personnel specifically<br>trained to operate and trouble-<br>shoot equipment problems             | PBDE and PBB, as well as toxaphene and other highly chlorinated (≥4 Cl) OCPs                                   |
| 1                                           | Sample extraction and clean-<br>up equipment, capillary GC-<br>HRMS                                        | Helium/air conditioning/<br>consistent power/high opera-<br>tional costs /personnel spe-<br>cifically trained to operate and<br>troubleshoot complicated<br>instrumentation | PCDD/PCDF, all PCB, all<br>OCPs, PBB, all PBDE                                                                 |

Instrumentation – Tier

GMP guideline

GC-ECD - gas chromatography/electron capture detection

GC-LRMS - gas chromatography/low resolution mass spectrometry

GC-HRMS – gas chromatography/high resolution mass spectrometry

LC-MS/MS - high performance liquid chromatography/tandem mass spectrometry

PY - Person-year

# Standard operational procedures for new POPs – example of PFAS

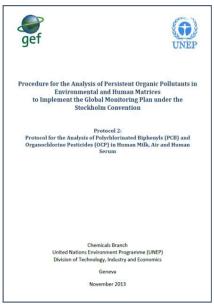
### Method development

- In order to generate high quality and comparable results, the protocols and methods for sampling and analysis of all POPs in relevant types of samples have to be <u>harmonized</u>;
- In all regions and over time, the <u>same basic approaches and quality</u> <u>criteria</u> for acceptance of data and assessment of results should be applied.
  - Standard operating procedures (SOPs) for groups of POPs
  - General guidelines for specific matrices (types of samples):

Note: The guides and SOPs should be taken as an orientation and be transferred into daily routines by each laboratory.

http://www.unep.org/chemicalsandwaste/POPsandScience/AnalysisandMonitoring/MethodDevelop ment/tabid/1059865/Default.aspx

# Choice of analytical method


- The SOPs prepared for UNEP describe general procedures for analysis;
- However, <u>it is possible to change</u> certain parameters and analytical conditions described in this protocol, while still obtaining the same results;
- In any case, the entire method should be <u>optimized</u> and <u>validated</u> to ensure the comparability of data.

### SOPs for POPs

- Procedure for the Analysis of POPs – Protocol 1: Analysis of PFOS in Water and FOSA in Mothers' Milk Serum and Air, and the Analysis of some FOSAs and FOSEs in Air
- Procedure for the Analysis of POPs – Protocol 2: Analysis of PCB and OCP in Human Milk, Air and Human Serum
- Procedure for the Analysis of POPs – Protocol 3: Analysis of PBDE in Human Milk, Air and Human Serum







http://www.unep.org/chemicalsandwaste/POPsandScience/AnalysisandMonitoring/MethodDevelopmen t/tabid/1059865/Default.aspx HF, New POPs Tools, Hanoi, Jan 2016

# INTERNATIONAL STANDARD

### ISO 25101

First edition 2009-03-01

#### Available at ISO home page

Water quality — Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) — Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry

# How to control background contamination in the laboratory?



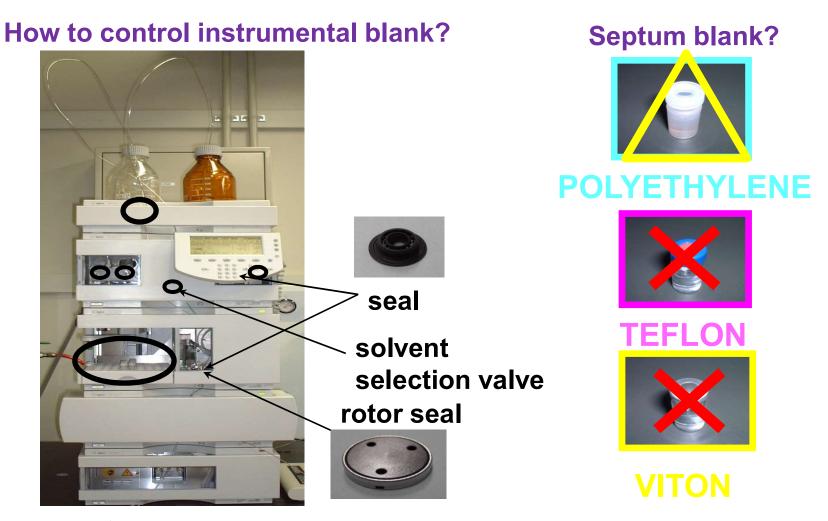














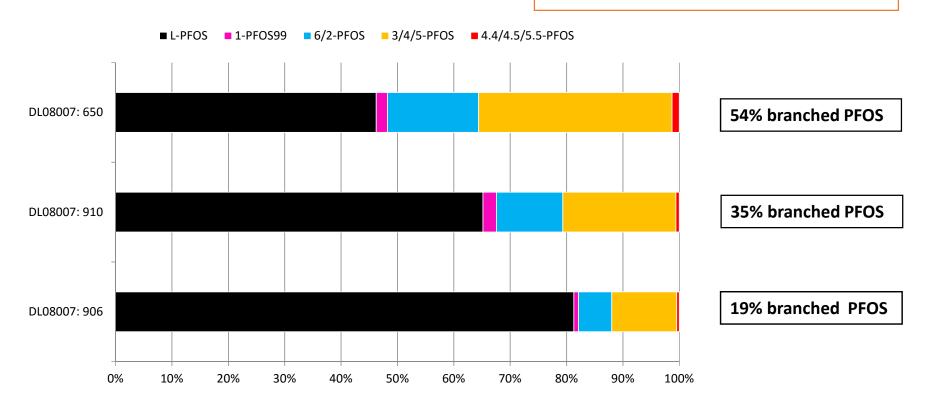





# How to control background contamination from the instrument?



# Structural isomers of PFOS identified in technical mixtures


| Abbreviation | Formula                                                                                                                                           | Name                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| L-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CSO <sub>3</sub>  | n-perfluoro-octanesulfonate            |
| 1-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF(CF <sub>3</sub> )SO <sub>3</sub>               | perfluoro-1-methyl-heptanesulfonate    |
| 2-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> SO <sub>3</sub>               | perfluoro-2-methyl-heptanesulfonate    |
| 3-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>               | perfluoro-3-methyl-heptanesulfonate    |
| 4-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>               | perfluoro-4-methyl-heptanesulfonate    |
| 5-PFOS       | CF <sub>3</sub> CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CSO <sub>3</sub>              | perfluoro-5-methyl-heptanesulfonate    |
| 6-PFOS       | CF <sub>3</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CSO <sub>3</sub>              | perfluoro-6-methyl-heptanesulfonate    |
| 4,4-PFOS     | CF <sub>3</sub> CF(CF <sub>3</sub> ) <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> | perfluoro-4,4-dimethyl-hexanesulfonate |
| 3,5-PFOS     | CF <sub>3</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>                           | perfluoro-3,5-dimethyl-hexanesulfonate |
| 4,5-PFOS     | CF <sub>3</sub> CF(CF <sub>3</sub> )CF(CF <sub>3</sub> )CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>                           | perfluoro-4,5-dimethyl-hexanesulfonate |
| 5,5-PFOS     | CF <sub>3</sub> C(CF <sub>3</sub> ) <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>  | perfluoro-5,5-dimethyl-hexanesulfonate |
|              |                                                                                                                                                   |                                        |

Technical mixtures typically contain between 71% and 83% L-PFOS (Vyas et al. 2007)

# Differences in PFOS isomer profiles in human plasma

Why do we see differences?

- -sources of exposure
- -historical vs. recent exposure
- -precursors
- -differences internal elimination



# Choice of analytical method

| Analytes       | N              | Study type                  | Year  |                  | Sample prepara                                                                     | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Instrumenta         | l analysis                   |                      |
|----------------|----------------|-----------------------------|-------|------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------------------------|----------------------|
|                | analytes       |                             |       | Sample<br>amount | Pre-treatment                                                                      | Extraction and clean-<br>up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Configuration        | Injection<br>volume | Separation                   | Ref.                 |
| PFAAs          | 13             | Method<br>development       | 2011  | 100 μL           | 0.1 M formic acid                                                                  | On-line SPE: C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HPLC-ESI-MS/MS       | 400 μl              | Betasil C8                   | [41]                 |
| PFAAs          | 13             | Inter-laboratory comparison | 2010  | 0.15–1.2 g       | Formic acid<br>(50/50, v/v)                                                        | SPE: Oasis WAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HPLC-ESI-MS/MS       | 5-20 µl             | Betasil C8                   | [38]                 |
| PFAAs          | 10             | Inter-laboratory comparison | 2010  | 0.2 mL           | 0.1 mol/L formic<br>acid                                                           | On-line SPE: C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HPLC-TIS-MS/MS       | n.i.                | Betasil C8                   | [38]                 |
| PFAAs          | 13             | Inter-laboratory comparison | 2010  | 0.2 mL           | PP with acetonitrile                                                               | n.i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HPLC-TIS-MS/MS       | n.i.                | Betasil C18,<br>Prism RP C12 | [38]                 |
| PFAAs          | 8              | Inter-laboratory            | 2010  | 1 mL             | n.i.                                                                               | LLE using ion pair,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HPLC-ESI-MS/MS       | n.i.                | ACE C18                      | [38]                 |
| PFAAs<br>PFAAs | 9              |                             |       | e of an          | alytical                                                                           | method s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | should b             | e ne                | eds-                         | [38]                 |
| 8.65.75.75.    | T.             | The ch                      |       | e of an          | alytical<br>eveloped                                                               | method s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | should b             | e ne                | eds-                         | [38]                 |
| PFAAs<br>PFAAs | 11             | The ch<br>orient            | ed a  | e of an          | alytical<br>eveloped                                                               | method so to fit the udy!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | should b<br>e purpos | e nee               | eds-<br>the                  | [38]<br>[37]<br>[40] |
| PFAAs          | 11             | The ch                      |       | e of an          | alytical<br>eveloped<br>st                                                         | method s d to fit the udy!  SPE: Oasis WAX, LLE using ion pair, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | should b             | e ne                | eds-                         | [38]<br>[37]<br>[40] |
| PFAAs<br>PFAAs | 11             | The chorient                | ed a  | e of an          | alytical<br>eveloped<br>st                                                         | method so to fit the udy!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | should b<br>e purpos | e nee               | eds-<br>the                  | [38]<br>[37]<br>[40] |
| PFAAs<br>PFAAs | 11<br>19<br>25 | The chorient                | zed a | e of an          | eveloped<br>st<br>Formic acid<br>(50% in water)<br>or acetonitrile<br>0.1 M formic | method somethod somet | should be purpos     | e neese of          | eds-<br>the                  | [38]<br>[37]<br>[40] |

# Principle

- Sample preparation of water, milk, and serum/plasma samples is similar but is different for air;
- Extraction involves Soxhlet extraction and SPE;
- Clean-up (ENV carb) is used depending on the complexity of the sample matrix;
- Method valididation using ILSs, SRMs, CRMs, and spiking experiments;
- Instrumental analysis performed using UPLC-ESI-MS/MS operated in negative ion mode.

# Materials and reagents

#### Materials:

- ✓ Glass Beaker (2 L)
- ✓ Polypropylene bottle (100 mL)
- ✓ Plastic pipettes
- ✓ Polypropylene tubes (15 mL)
- ✓ Micro tubes (1.5 mL)
- ✓ Crimpcap polypropylene vial (700 µL)
- ✓ Seal, silver aluminum 11 mm, PTFE/Rubber Liner
- ✓ Capper/Decapper
- ✓ Ultrasonic bath
- ✓ Vacuum dessiccator
- ✓ Passive sampler
- ✓ Balance (precision 0.01 g)
- ✓ Pipettes (50, 100 and 200 μL)
- ✓ Centrifuge
- ✓ Oven (37 °C)
- ✓ SPE device (rinse with methanol and water prior to use)
- ✓ pH meter
- √ Vacuum pump
- ✓ Water bath (50 °C)
- √ Whirlmixer
- ✓ LC-MS/MS (LC-QQQ). Electrospray source (ESI) with negative polarity
- ✓ FluoroSEP-RP Octyl column, 15 cm x 2.1 mm, 5 μm particle size, ES Industries (132211-FO)
- 2 x Symmetry columns C18, 20 mm x 3.9 mm, 5 μm particle size, Waters (WAT054225)
- ✓ Symmetry column C18, 50 mm x 2.1 mm, 5 µm particle size, Waters (18600206)

#### Reagents:

- ✓ Polyurethane foam (PUF) disk, 14 cm x 1.35 cm, surface area 365 cm², mass 4.40 g, volume 207 cm³, Tisch Environmental, Cleves, OH
- ✓ Aceton, Ultraresi, J.T.Baker (9254)
- ✓ Petroleum ether, J.T.Baker
- ✓ Methanol, HPLC gradient grade, J.T.Baker (8402)
- ✓ Internal standard (<sup>13</sup>C<sub>4</sub> PFOS + <sup>18</sup>O<sub>2</sub> PFOSA + <sup>2</sup>H<sub>3</sub> MeFOSA + <sup>2</sup>H<sub>5</sub> EtFOSA + <sup>2</sup>H<sub>7</sub> MeFOSE + <sup>2</sup>H<sub>9</sub> EtFOSE) in methanol (100 ng/mL)
- ✓ Internal standard (<sup>13</sup>C<sub>4</sub> PFOS + <sup>18</sup>O<sub>2</sub> PFOSA) in methanol (100 ng/mL)
- ✓ 50% Formic acid in water
- ✓ SPE Cartridge, Oasis WAX 6cc, Waters 186002493
- ✓ Ammonia 25% p.a. purity
- ✓ 0.1% NH4OH in methanol; add 400 µL ammonia to100 mL methanol
- ✓ 2 % NH4OH in methanol; add 8 mL ammonia to 92 mL methanol
- ✓ HPLC water, HPLC analyzed, J.T. Baker (4218), or MilliQ purity
- ✓ Acetic acid 100 % pro analysis (p.a.) purity
- ✓ Ammonium acetate p.a. purity
- ✓ 25 mM Ammonium acetate; add 190 mg ammonium acetate to 100 mL water and adjust the pH to pH=4 with acetic acid
- ✓ Nitrogen gas. Purity 5.0
- ✓ Injection standard (1) (13C8 PFOS) in methanol/water (1:1, v/v) (150 ng/mL)
- ✓ Injection standard (2) (13C8 PFOS) in methanol/water (1:1, v/v) (50 ng/mL)
- ✓ Injection standard (3) (13C8 PFOS) in methanol/water (1:1, v/v) (25 ng/mL)
- ✓ Ammonium formate, (>99%), Fluka (09735)
- ✓ Ammonium formate buffer 5 mM: Dissolve 315 mg ammonium formate in 1 L HPLC water. Filter prior to use.
- ✓ PFAS calibration solutions (0.05, 0.25, 0.5, 5, 50, 100 ng/mL) in methanol/water (1:1, v/v)

### Air

- Polyurethane foam (PUF) disk
  - Preparation of the PUF
- Cleaning of a PUF:
  - If necessary, wash the PUF in water;
  - Perform a Soxhlet extraction on the PUF with acetone (24 h), followed by petroleum ether (24 h)

mounting bracket

stainless steel dome

support ring

stainless steel

mesh tube

containing XAD

steel housing

PUF disk

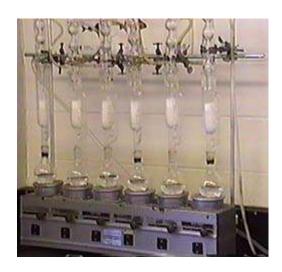
air circulation

- Dry the PUF in a desiccator (24 h).

#### Air sampling

- Place a PUF in a passive sampler for three months at sampling location.

#### Sample preparation


- Take the PUF out of the sampler;
- Add 150 μL Internal standard (I.S.) to the PUF.

#### Procedural blank

 Prepare a PUF as described above without the exposure time during the sampling.

# Air - analysis

- Perform a Soxhlet extraction with methanol (12 h);
- Concentrate the extract to 1 mL by using either a rotary evaporator or Kuderna-Danish;
- Filter the extract through a 0.2 µm glass hydrophilic polypropylene (GHP) filter into a polypropylene LC vial;
- Concentrate to 200 μL under a gentle stream of nitrogen;
- Add 100 μL injection standard 1;
- Add 300 μL 2mM ammonium acetate and shake manually;
- Analyze with LC-MS/MS.



# Water sampling and sample preparation

The water sampling is described in "PFOS analysis in water for the Global Monitoring Plan of the Stockholm Convention" (UNEP GMP WG).

#### Sample preparation

- As soon as the sample arrives to the analytical laboratory internal standards (IS) should be added to compensate for absorbance to laboratory equipment;
- The sample (incl. IS) should have time to equilibrate before analysis;
- Keep the water samples (500 mL) in a high density polyethylene (HDPE)
  in the fridge or freezer (-20 °C) and defrost them the day before
  analysis;
- Shake the water rigorously before subsamples are taken out;
- Weigh 100 mL of water sample in a HDPE bottle (100 mL);

#### Procedural blank

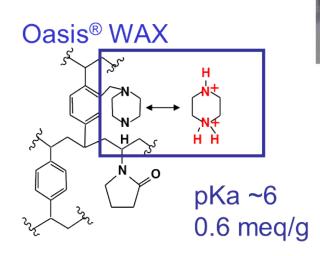
 Prepare a procedural blank sample but using ultra clean (MilliQ) water as sample substitute HF, New POPs Tools, Hanoi, Jan 2016

# Human milk sampling and sample prep.

Follow the UNEP/WHO protocol for sampling of human milk 'UNEP-coordinated Survey of Mothers' Milk for Persistent Organic Pollutants' (<a href="http://www.unep.org/chemicalsandwaste/portals/9/POPs/docs/Mothers/20milk%20guide%20POPs.pdf">http://www.unep.org/chemicalsandwaste/portals/9/POPs/docs/Mothers/20milk%20guide%20POPs.pdf</a>)

#### Sample preparation

- Homogenise the samples (50 mL) manually by shaking for 1 min;
- Weigh 1 mL of milk sample, or 0.5 mL serum sample in PP tube (15 mL);
- Add 50 μL I.S. (4.2);
- Add 2 mL 50% formic acid and shake manually;
- Place the sample in an ultrasonic bath for 15 min;
- Centrifuge for 15 min at 3,000 rpm;
- Place the samples in an oven at 37 °C for 30 min.


#### **Procedural blank**

 Prepare a procedural blank sample as described above in sample description but using ultra clean (MilliQ) water as sample substitute.
 HF, New POPs Tools, Hanoi, Jan 2016

## Water, human milk and human serum

 Solid phase extraction (SPE) is used for the extraction of water, mothers' milk and serum. Install an SPE cartridge on the SPE device.

- Waters Oasis® WAX SPE Column
- Mixed-mode Weak AnioneXchange and reversedphase sorbent
- Single use Oasis cartridge
- Retain and release strong acids (e.g. sulfonates)



# Method validation and performance

- Sensitivity
  - MDLs ranged between 0.01 ng mL<sup>-1</sup>-0.17 ng mL<sup>-1</sup>
  - Linear range 0.01 ng mL<sup>-1</sup>-60 ng mL<sup>-1</sup>
- Accuracy
  - Conformed well with NIST SRM 1957 (n=54)
  - 6%-32% normalized difference
- Repeatability (QC n=7) and reproducibility (QC n=103) ranged between 2%-20% including structural PFOS isomers



#### Journal of Chromatography A

Tanadad

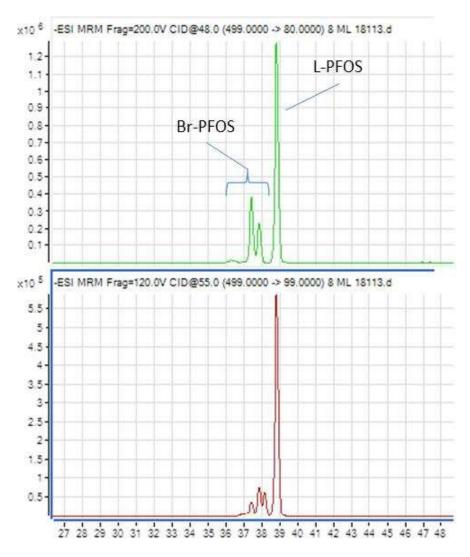
journal homepage: www.elsevier.com/locate/chroma

A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry



Samira Salihovic<sup>a,\*</sup>, Anna Kärrman<sup>a</sup>, Gunilla Lindström<sup>a</sup>, P. Monica Lind<sup>b</sup>, Lars Lind<sup>c</sup>, Bert van Bavel<sup>a</sup>

<sup>&</sup>lt;sup>a</sup> MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden


b Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden

<sup>&</sup>lt;sup>c</sup> Acute and Internal Medicine, Uppsala University, Uppsala, Sweden

# Instrumental analysis

- Install the analytical column and the guard column in the HPLC;
- Install an <u>extra column</u> (50 mm) and a guard column <u>between the LC pump and</u>
   <u>the injector</u>, to prevent interference of PFASs, originating from the LC system,
   with the target compounds;
- Purge all the mobile phase solvents through the system
- Start the pump with 65% ammonium formate and 35% methanol;
- Put all extracts, blanks, and calibration solutions in the tray of the autosampler;
- Make a sequence in the computer. Analyse the samples, the calibration solutions, the blank and the reference material in random order;
- Inject a calibration solution after pump has been running for at least 30 min;
- Check the performance of the LC-MS/MS by comparing the results (retention times and peak intensities) of the injected calibration solution with earlier results;
- Start the sequence.

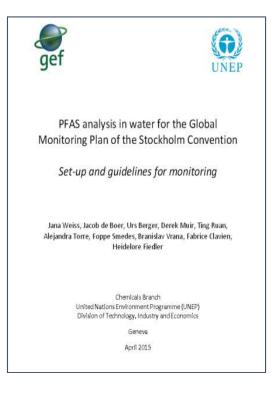
# Sample chromatogram



HF, New POPs Tools, Hanoi, Jan 2016

Chromatogram showing the separation of linear and branched PFOS in water (surface water sample from The Netherlands)

Note: PFAS concentrations should be reported on wet weight basis. However, often, results are reported on sulfonate anion basis, i.e., corrected for the molecular weight of the PFOS salt (with cation)


# Mass settings for PFAS analysis

| Compound                           |                    | Precursor Ion (m/z) | Production (m/z) | Comment    |
|------------------------------------|--------------------|---------------------|------------------|------------|
| PFOS                               | Target compound    | 499                 | 80               | Quantifier |
|                                    |                    |                     | 99               | Qualifier  |
| <sup>13</sup> C <sub>4</sub> PFOS  | Internal standard  | 503                 | 80               | Quantifier |
|                                    |                    |                     | 99               | Qualifier  |
| <sup>13</sup> C <sub>8</sub> PFOS  | Injection standard | 507                 | 80               | Quantifier |
|                                    |                    |                     | 99               | Qualifier  |
| FOSA                               | Target compound    | 498                 | 78               | Quantifier |
|                                    |                    |                     | 169              | Qualifier  |
| <sup>18</sup> O <sub>2</sub> FOSA  | Internal standard  | 502                 | 82               | Quantifier |
|                                    |                    |                     | 169              | Qualifier  |
| MeFOSA                             | Target compound    | 512                 | 169              | Quantifier |
|                                    |                    |                     | 219              | Qualifier  |
| <sup>2</sup> H <sub>3</sub> MeFOSA | Internal standard  | 515                 | 169              | Quantifier |
|                                    |                    |                     | 219              | Qualifier  |
| EtFOSA                             | Target compound    | 526                 | 169              | Quantifier |
| <sup>2</sup> H <sub>5</sub> EtFOSA | Internal standard  | 531                 | 169              | Quantifier |
| MeFOSE                             | Target compound    | 602                 | 45               | Quantifier |
| <sup>2</sup> H <sub>7</sub> MeFOSE | Internal standard  | 609                 | 45               | Quantifier |
| EtFOSE                             | Target compound    | 616                 | 45               | Quantifier |
| <sup>2</sup> H <sub>9</sub> EtFOSE | Internal standard  | 625                 | 45               | Quantifier |

### Tools and methods for new POPs

- PFAS analysis in water Set-up and guidelines for monitoring
- Instructive movie for analysis of PFOS and precursors
- Movie with instructions for the cleaning of PUF disks for passive sampling of ambient air





http://www.unep.org/chemicalsandwaste/POPsandScience/AnalysisandMonitoring/Method Development/tabid/1059865/Default.aspx