Development of the guideline for PFAS in water

Heidelore Fiedler
Örebro University
School of Science and Technology, MTM Research Centre
SE-701 82 Örebro, Sweden
Steps in setting up a monitoring plan

- Planning
 - Formulation of objectives
 - Location
 - Frequency
 - Sampling method

- Sampling
 - Water sampling
 - Data collection

- Analysis
 - Chemical analysis
 - Data interpretation
 - Reporting

- Storage

HF, New POPs Tools, Hanoi, Jan 2016
UNEP/GEF PFAS Expert Group

1. Jacob de Boer/Jana Weiss
 IVM, Vrije Universiteit, Amsterdam, Netherlands
2. Derek Muir
 Environment Canada, Burlington, Canada
3. Nobuyoshi Yamashita/E. Yamazaki
 AIST, Tsukuba, Ibaraki, Japan
4. Urs Berger
 UFZ, Leipzig, Germany
5. Guibin Jiang/Ting Ruan
 Chinese Academy of Sciences, Beijing, China
6. William Aalbersberg/Shalvin Raj
 University of South Pacific, Suva, Fiji
7. Branislav Vrana/Foppe Smedes
 RECETOX, Brno, Czech Republic
8. Vincent Odongo Madadi
 University of Nairobi, Kenya
9. Alejandra Torre
 LATU, Montevideo, Uruguay
10. Yasuyuki Shibata
 NIES, Tsukuba, Ibaraki, Japan
11. Bert van Bavel
 MTM Centre, Örebro University, Örebro, Sweden
12. Esteban Abad Holgado
 IDÆA-CSIC, Barcelona, Spain
13. Christian Bogdal
 ETH Zurich, Zurich, Switzerland
14. Heidi Fiedler
 UNEP Chemicals Branch, Geneva, Switzerland
Thought starter
by Jana Weiss and the PFAS expert group

• PFOS and PFOA characterized by high water solubility, despite their lipophilic tail (570 mg/L for PFOS, 3400 mg/L for PFOA)

• Components of the guide
 – Sample matrices and sites
 – Guidance on storage, extraction, clean up and analysis in details
 – Sampling frequency
 – Proposal for possible sampling locations
 – Interlaboratory assessment as QA/QC tool

• Pilot testing undertaken in early 2014 (towards the end of the MSP project)

• Followed by expert consultation in fall 2014 → Prepare the guideline → present the guide to Global Coordination Group of the GMP
PFOS isomers

L-PFOS

4-PFOS

3,5-PFOS

HF, New POPs Tools, Hanoi, Jan 2016
PFOS-related compounds

N-methyl perfluoroctane sulfonamide
MeFOSA

N-ethyl perfluoroctane sulphonamide
EtFOSA

N-methyl perfluoroctane sulfonamidoethanol
MeFOSE

N-ethyl perfluoroctane sulfonamidoethanol
EtFOSE
FOSA was an ingredient in 3M’s Scotchgard formulation (to repel grease and water in food packaging).

FOSA is also a degradation product of N-EtFOSE or N-MeFOSE.

Given the potential complications of measuring FOSA, i.e., degradation during storage, possible loss during extraction, and binding to particles in natural waters, it is **NOT recommended to analyse FOSA**.
PFOA

Perfluorooctanoic acid

• PFOA is not produced from PFOS precursors;
• Currently not listed under the Stockholm Convention (presently under discussion for listing by POPRC);
• Furthermore, analytical challenges such as much greater blank and laboratory contamination issues.
<table>
<thead>
<tr>
<th></th>
<th>Direct water sampling</th>
<th>Passive water sampling (PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparability of results WW</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Achievement of a concentration (ng/L)</td>
<td>+</td>
<td>uptake rate is a difficult parameter</td>
</tr>
<tr>
<td>Integrative sample</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>highly sensitive to the water flow rate in case of a variable flow regime and to variable emissions in case of point sources</td>
<td>provide an integrative sample less sensitive to short-term variations in the water/emission regime</td>
</tr>
<tr>
<td>Costs</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>Required experience</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>sampling itself doesn’t require much experience, but taking a representative sample requires much experience and planning</td>
<td>handling and correct installation of PS requires more experience, but obtained sample is more representative of the average environmental conditions on site</td>
</tr>
<tr>
<td>Required additional data</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sampling site need to be specified, and weather conditions recorded</td>
<td>to calculate uptake rate and state of equilibrium extra measurements need to be performed</td>
</tr>
<tr>
<td>Convenience of sampling/installation</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>a good fixation/anchorage of PS requires planning/experience</td>
<td></td>
</tr>
<tr>
<td>Problems of difficult weather conditions/vandalism</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PS can be lost due to flooding/storms, theft. Protected spot is required.</td>
<td></td>
</tr>
</tbody>
</table>
Sampling frequency

Recommendation from UNEP/WHO (1996)

<table>
<thead>
<tr>
<th>Baseline stations</th>
<th>Streams</th>
<th>Minimum</th>
<th>4 per year, including high- and low-water stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Optimum</td>
<td>24 per year (every second week); weekly for total suspended solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Headwater lakes</td>
<td>Minimum</td>
<td>1 per year at turnover; sampling at lake outlet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimum</td>
<td>1 per year at turnover, plus 1 vertical profile at end of stratification</td>
</tr>
</tbody>
</table>

Trend stations	Rivers/estuaries	Minimum	12 per year for large drainage areas, approximately 100,000 km²
		Maximum	24 per year for small drainage areas, approximately 10,000 km²
	Lakes/reservoirs	Minimum	1 per year at turnover
		Maximum	2 per year at turnover, 1 at maximum thermal stratification
Discussion topics at expert WS (fall 2014)

- Sampling methods
 - passive, active,
 - volume, equipment,
 - additional data acquisition

- Sampling frequency
 - baseline, trends

- Sampling locations and how to take representative samples

- Logistics, networks, data storage...

- Chemical analysis
 - method, training, Interlaboratory assessments, etc.
1. Recommendation for location

- Define objectives of the project and selected monitoring site.
- Gather hydrological and other relevant data (presence of industry and WWTP, population density, etc.).

- **Estuaries are recommended as sampling sites**, but data from other sites are welcome and should have one of the following characteristics:
 - Estuary and larger tidal rivers and bays
 - River downstream populated area (sufficient mixture distance from any influent)
 - Lake with a defined surrounding population
 - Tributary (before entering the main stream)

- Adapt the distance to shore to existing circumstances at the site. Make sure the water sampled is from a zone where it is mixed.

- Ease of access by limnological or oceanographic vessels with capacity to deploy water sampling equipment or from land based sites such as bridges.
2. Recommendation for frequency

- Sample at a selected site 4 times a year (same site and with the same method);
- Carefully determine the sampling occasions depending on optimal conditions, preferably consistent between years, *e.g.*,:
 - 2 times high-water stage and
 - 2-timed low-water stage,
 - Although avoiding drought conditions or freezing conditions
3. Recommendation for sampling method

- Active/grab sampling is the recommended method;
- Use, remotely activated water samplers (*e.g.*, Niskin™), or hand-dipping;
- Avoid sampling the surface;
- For sampling use a 500 mL wide mouth HDPE bottle;
- Use HDPE sampling and storage containers (bottles, test tubes, vials, *etc.*);
- All material should be rinsed with methanol before usage;
- Analysis volume is typically 50 mL-500 mL; be determined by the analytical laboratory;
- To avoid cross contamination, the sample bottles should only be used once;
- Take 2 samples, one for analysis and one for later confirmation if needed;
- Store the samples in the fridge until analysis;
- It is recommended to perform a pilot sampling to establish the levels and practice the sampling.
4. Minimum data to report

- Site ID code
- Location name
- Date
- Names of personnel conducting the sampling
- GPS coordinates of sampling site
- Marine/fresh water
- Distance to shore
- Water depth
- Sampling depth
- Total suspended solid (TSS)
- Conductivity
5. Recommendation for reporting

• Investigate existing monitoring programs and collaborate for data collection and at sampling occasions;

• Provide the Convention with the minimum data set asked for.
6. Recommendation sample pre-treatment

- The sample shall not be filtered before analysis, unless it is necessary to avoid blocking of the solid phase extraction cartridges.
- The analysed phase should be properly reported with the data.
- Add recovery internal standards as soon as the samples arrive at the analytical laboratory.
- Let the sample equilibrate with the recovery internal standard added before analysis (~month).
- It is recommended to use the whole sample from one bottle for analysis.
- **Recommendation for PFOS extraction of water:** Use WAX SPE column for extraction and clean up
7. Recommendation for analysis and reporting

- Recommended instrument is LC-MS/MS;
- Minimum demand is that the analytical instrument has multiple MS capacity to produce quantifier and qualifier ions for quantification;
- Determine the linear range of the calibration curve;
- The linear- and the total PFOS concentrations should be reported;
- A procedural blank shall be determined in parallel;
- The blank levels should be less than 10% and the reported concentrations corrected for blank levels.
8. Chemical analysis

<table>
<thead>
<tr>
<th>Compound</th>
<th>Precursor Ion (m/z)</th>
<th>Daughter ion (m/z)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFOS Target</td>
<td>499</td>
<td>80</td>
<td>Quantifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>Qualifier</td>
</tr>
<tr>
<td>13C$_4$ PFOS</td>
<td>503</td>
<td>80</td>
<td>Quantifier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>Qualifier</td>
</tr>
</tbody>
</table>

- The results should be reported on sulfonate anion basis, i.e., corrected for the molecular weight of the PFOS salt.
- In general, a five point calibration curve (5 different concentrations) needs to be constructed to demonstrate there is a linear dependence between signal and concentration;
- The sample preparation should be adapted to fit the final concentration to be inside the concentration range;
- Report concentration of L-PFOS and total PFOS (linear and branched as a sum)
Tools for new POPs sampling network

- UNEP/GEF project 'Establishing the Tools and Methods to Include the Nine New POPs into the Global Monitoring Plan', GEF 4B97
- Method development 'PFAS guide'

HF, New POPs Tools, Hanoi, Jan 2016