Preparation, characterization and application of NaHCO<sub>3</sub> leached bulk U(VI) imprinted polymers endowed with γ-MPS coated magnetite in contaminated water

Luke Chimuka

School of Chemistry, University of Witwatersrand







# **Presentation outline**

- □ Introduction and background
  - Ion imprinted polymers (IIPs)
  - Magnetic IIPs
  - U(VI) target
- □ Aims and objectives
- Materials and methods
- Results and discussion
  - Synthesis and characterization of magnetic particles
  - Optimization of adsorption parameters
  - Application

#### Conclusions

# Principle of imprinting of polymers

Molecularly (Ion) imprinted polymers are highly stable polymers that possess recognition sites within the polymer matrix that are adapted to the three-dimensional (3-D) shape and functionalities of an analyte of interest



# Overview of some application areas

- Selective sorbents in environmental remediation
- Selective stationary phases in chromatography
- Site-mediated synthesis, enzyme mimics/catalysis
- Sensor like devices, antibody-receptor mimics
- Screening combinatorial libraries, drug delivery

# Magnetic materials

- Materials that respond to external magnetic field
- They usually have unpaired electrons



## Benefits of combining magnetic particles with imprinted polymers

- Magnetic property helps to separate the particles from the sample using a magnetic
- Magnetic property helps to eliminate time consuming and expensive methods such as centrifugation and filtration during sample extraction process
- Selectivity of the particles helps to remove only the chosen analyte from the sample that is of concern (from complex matrices)

### Background-uranium

- Used to fuel commercial nuclear power plants (storage of huge amounts of energy)
- Geochemical speciation of uranium influences its solubility, mobility and biological availability in the environment
- Distribution of uranium ions in aqueous solution is dependent on both the solution pH and the total uranium concentration
- At low concentration and pH, U(VI) predominates

## Effects of uranium

- Non-renewable resource of nuclear energy
- Radioactive
- Bio-accumulation in food webs
- Excessive exposure cause kidney toxicity
- Glomeruli damage
- Regulation of dangerous uranium

|                           | Maximum allowable limit (µg L <sup>-1</sup> ) |
|---------------------------|-----------------------------------------------|
| World Health Organization | 9                                             |
| Health Canada             | 20                                            |
| Australian                | 20                                            |

#### Aims and objectives

- To synthesize superparamagnetic magnetite
- To functionalize magnetite using γ-MPS surfactant
- To prepare the magnetic nano-composite materials based on ion-imprinted polymers specific for U(VI)
- To characterize the prepared magnetite, functionalized magnetite and magnetic nano-composite polymers selective for U(VI)
- To study the binding behaviour of U(VI) onto the prepared magnetic nano-composite beads from aqueous solutions

## **Polymerization scheme**



**γ-MPS**: γ-methacryloxypropyltrimethoxysilane, VP: vinylpyridine, MAA: methacrylic acid, SALO: salicylaldoxime, EDGMA: ethylene glycol dimethacrylate

#### Schematic diagram for the synthesis of magnetic IIP



## Leaching of U(VI) from magnetic polymers

- Batch extraction approach
- The template was removed using NaHCO<sub>3</sub>



#### Morphological and elemental analysis of coated magnetite



- Spherical particles
- Narrow particle size diameters
- Agglomeration

| CHNS elemental analysis |       |      |                           |  |  |
|-------------------------|-------|------|---------------------------|--|--|
|                         |       |      | Ligand                    |  |  |
| mass (g)                | % C   | % H  | concentration             |  |  |
|                         |       |      | $(\text{mmol } g^{-1}) *$ |  |  |
| 2.00                    | 20.16 | 2.94 | 16.8                      |  |  |
| 2.00                    | 19.25 | 2.92 | 15.8                      |  |  |
| 2.00                    | 18.92 | 2.84 | 15.8                      |  |  |

\*Values for the ligand concentration were all based on the carbon content

Quantitative loading of  $\gamma$ -MPS on magnetic = 16.1 mmol g<sup>-1</sup>



## FTIR confirmation of γ-MPS coating of magnetite



- Of note is the OH with a stretching frequency of 3186 cm<sup>-1</sup>
- Functionalization evident with the band at 1716 cm<sup>-1</sup>

#### Thermogavimetric analysis and BET measurements

Thermal stability of magnetic polymers



| BET surface area                        | BET surface<br>area (m <sup>2</sup> g <sup>-1</sup> ) | $v_m$ (cm <sup>3</sup> g <sup>-1</sup> ) | С     |
|-----------------------------------------|-------------------------------------------------------|------------------------------------------|-------|
| Unleached magnetic IIP                  | 8.8                                                   | 2.09                                     | 94.86 |
| NaHCO <sub>3</sub> leached magnetic IIP | 65.2                                                  | 15.43                                    | 129.6 |

# Optimization of adsorption parameters

□ Batch sorption experiments

- Sample pH
- Sample weight
- Contact time \_\_\_\_\_\_ (Kinetic modeling)
- Sample concentration  $\longrightarrow$  (Adsorption modeling)

#### □ Magnetic IIP performance

Extraction efficiency = 
$$\frac{(C_o - C_e)}{C_o} \times 100\%$$

$$q = \frac{(C_o - C_e)V}{W}$$

where Co (mg  $L^{-1}$ ) is the initial concentration, Ce (mg  $L^{-1}$ ) the final concentration, q (mg g<sup>-1</sup>) adsorption capacity

# Mass optimization



Experimental conditions: Sample pH, 4; sample volume, 25 mL; uranium concentration, 2 mg L<sup>-1</sup>; Contact time, 45 min; stirring speed, 1500 rpm; temperature, ambient temperature

- Optimum amount of magnetic IIP = 50 mg
- Selective to U(VI) (Imprinting effect)

#### **Time optimization**



- Low uptake capacity of U(VI) by magnetic IIP
- Optimum extraction time = 45 min (Fast mass transfer)

#### **Kinetic modeling**

|              | Pseudo first-order                   |                                      |                | Pseudo second-order     |                                                        |                |  |
|--------------|--------------------------------------|--------------------------------------|----------------|-------------------------|--------------------------------------------------------|----------------|--|
| Polymer      | k <sub>1</sub> ( min <sup>-1</sup> ) | q <sub>e</sub> (mg g <sup>-1</sup> ) | R <sup>2</sup> | q <sub>e</sub> (mg g⁻¹) | k <sub>2</sub> (g mg <sup>-1</sup> min <sup>-1</sup> ) | R <sup>2</sup> |  |
| Magnetic IIP | 0.054                                | 1.100                                | 0.885          | 1.008                   | 0.163                                                  | 0.9979         |  |
| Magnetic NIP | 0.071                                | 0.478                                | 0.986          | 0.859                   | 0.163                                                  | 0.9988         |  |

Pseudo-second- order model showed better correlation:

- Based on the linear regression (R<sup>2</sup> > 0.99)
- qe values obtained (0.86-1.00 mg g<sup>-1</sup>) close to experimental values

#### Initial concentration optimization



#### Adsorption modeling

|              | Langmuir constants            |                                      |         |       | Freu | ndlich cons      | stants |
|--------------|-------------------------------|--------------------------------------|---------|-------|------|------------------|--------|
| Polymer      | <i>b</i> (L g <sup>-1</sup> ) | q <sub>m</sub> (mg g <sup>-1</sup> ) | $R_{L}$ | $R^2$ | n    | $K_f (L g^{-1})$ | $R^2$  |
| Magnetic IIP | 0.09                          | 67.1                                 | 0.85    | 1.00  | 1.00 | 5.77             | 1.000  |
| Magnetic NIP | 0.22                          | 7.4                                  | 0.69    | 0.999 | 1.07 | 1.47             | 0.997  |

## Reusability and stability of magnetic polymers



Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 25 mL; contact time, 45 min, U(VI) concentration, 2 mg L<sup>-1</sup>

Desorption conditions: Solution volume, 25 mL; contact time, 45 min, HCl concentration leachant, 1 mol L<sup>-1</sup>

#### Conclusions

- Preparation of magnetic materials promising
- Further assessment of magnetic responses (SQUID and VSM) required
- Both magnetic IIPs and NIPs showed potential in the uptake of U(VI) from contaminated solutions
- Magnetic IIPs had superior performance as compared to the control due to imprinting
- Generally low uptake due to incorporation of the magnetic core









## Acknowledgements

- Mr Nikita Tavengwa
- Wits Postgraduate Merit Award
- Water Research Commission of South Africa
- United Nations Institute for Training and Research (UNITAR)

# Thank you !